UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD (LOGSE)

Junio Septiembre

Curso 2003-2004
MATERIA: MATEMÁTICAS II

R1 R2

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES: El examen presenta dos opciones, A y B. El alumno deberá elegir UNA Y SOLO UNA de ellas, y resolver los cuatro ejercicios de que consta. No se permite el uso de calculadoras con capacidad de representación gráfica.

PUNTUACIÓN: La calificación máxima de cada ejercicio se indica en el encabezamiento del mismo.

Tiempo: 90 minutos

OPCIÓN A

Ejercicio 1. Calificación máxima: 2 puntos.

a) (1 punto) Calcular el límite de la sucesión cuyo término general es $\left(\frac{3n-1}{3n}\right)^{2n}$

b) (1 punto) Sean las funciones: $F(x) = \int_1^x \sqrt{5 + e^{t^4}} dt$, $g(x) = x^2$. Calcular (F(g(x))'

Ejercicio 2. Calificación máxima: 2 puntos

Dada la función

$$f(x) = \begin{cases} (e^x - 1)/(x^2 - x) & \text{si } x \neq 0 \\ a & \text{si } x = 0, \end{cases}$$

- a) (1 punto) Determinar su dominio, y calcular los límites laterales cuando $x \to 1$.
- b) (1 punto) Estudiar su continuidad, y hallar el valor de a para el que f es continua en x = 0.

Ejercicio 3. Calificación máxima: 3 puntos

Discutir según los valores del parámetro λ , y resolver en los casos en que sea posible el sistema

$$\begin{cases} 6x + 4y + 2\lambda z &= 2\\ \lambda x + y - z &= 2\\ 5x + 3y + 3z &= 2\lambda \end{cases}$$

Ejercicio 4. Calificación máxima: 3 puntos

Dado el plano

$$\pi: x + y + az + 1 = 0$$

y las rectas

$$r \equiv \left\{ egin{array}{ll} x=1 \ y=t \ z=t \end{array}
ight. \qquad r' \equiv \left\{ egin{array}{ll} x=2 \ y=2t \ z=t \end{array}
ight. \qquad r'' \equiv \left\{ egin{array}{ll} x=3 \ y=3t \ z=t \end{array}
ight.$$

- a) Calcula el valor de a para que los puntos de corte del plano π con las rectas r, r' y r'' estén alineados. (1,5 puntos)
- b) Calcula las ecuaciones de la recta que pasa por esos tres puntos. (0,75 puntos)
- c) Calcula la distancia de dicha recta al origen. (0,75 puntos)

OPCIÓN B

Ejercicio 1. Calificación máxima: 2 puntos

Se consideran las rectas:

$$r \equiv \begin{cases} x - y = 2 \\ 2x - z + 1 = 0 \end{cases}$$
$$s \equiv \begin{cases} 2x - z + 2 = 0 \\ 2y - mz = 6 \end{cases}$$

a) Hallar el valor de m para que r y s sean paralelas.

b) Para el valor de m obtenido en el apartado anterior, determinar la ecuación del plano que contiene a las rectas r y s.

Ejercicio 2. Calificación máxima: 2 puntos

Calcular unas ecuaciones paramétricas de la recta que pasa por el punto P(3,-1,0) y corta perpendicularmente a la recta:

$$\begin{cases} x = 3 + 2\lambda \\ y = 4 + \lambda \\ z = 5 + 3\lambda \end{cases}$$

Ejercicio 3. Calificación máxima: 3 puntos

Se considera la función:

$$f(x) = \frac{1}{(1 + (\text{ sen } x)^2)}$$

Se pide:

a) (1 Punto) Calcular sus puntos críticos en el intervalo abierto $(-\pi, \pi)$.

b) (1 Punto) Calcular los extremos relativos y/o absolutos de la función f(x) en el intervalo cerrado $[-\pi, \pi]$.

c) (1 Punto) Hallar la ecuación de la recta tangente a la gráfica de la función f(x) en el punto $(\pi/4, f(\pi/4))$.

Ejercicio 4. Calificación máxima: 3 puntos

Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x + 3y - az = 4 \\ x + ay + z = 2 \\ x + 4y - 5z = 6. \end{cases}$$

Se pide:

a) (2 puntos) Discutir el sistema según los diferentes valores del parámetro a.

b) (1 punto) Resolver el sistema en el caso en que tenga infinitas soluciones.

MATEMÁTICAS II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

OPCIÓN A

Ejercicio 1. Un punto cada apartado.

Ejercicio 2. Apartado a): 0,5 puntos el dominio, y 0,5 puntos los límites. Apartado b): 0,5 puntos el estudio de la continuidad, y 0,5 puntos el valor de a.

Ejercicio 3. Discusión del sistema: 1,5 puntos. Resolución en el caso compatible: 1,5 puntos.

Ejercicio 4. Apartado a): 1,5 puntos. Apartado b): 0,75 puntos. Apartado c): 0,75 puntos.

OPCIÓN B

Ejercicio 1. 1 punto cada apartado.

Ejercicio 2. 1 punto planteamiento; 1 punto resolución.

Ejercicio 3. 1 punto cada apartado.

Ejercicio 4. 2 puntos apartado a); 1 punto apartado b).