TEMA 5 – FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

COMPOSICIÓN DE FUNCIONES

EJERCICIO 1: Dadas las siguientes funciones: $f(x) = \frac{-3x+2}{4}$ y $g(x) = x^2 + 1$, halla:

a)
$$(f \circ g)(x)$$

b)
$$(g \circ g)(x)$$

Solución:

a)
$$(f \circ g)(x) = f[g(x)] = f[x^2 + 1] = \frac{-3(x^2 + 1) + 2}{4} = \frac{-3x^2 - 3 + 2}{4} = \frac{-3x^2 - 1}{4}$$

b)
$$(g \circ g)(x) = g[g(x)] = g[x^2 + 1] = (x^2 + 1)^2 + 1 = x^4 + 2x^2 + 1 + 1 = x^4 + 2x^2 + 2$$

EJERCICIO 2: Las funciones f y g están definidas por $f(x) = \frac{x^2}{3}$ y g(x) = x + 1. Calcula:

a)
$$(f \circ g)(x)$$

b)
$$(g \circ g \circ f)(x)$$

Solución:

a)
$$(f \circ g)(x) = f[g(x)] = f[x+1] = \frac{(x+1)^2}{3} = \frac{x^2 + 2x + 1}{3}$$

b)
$$(g \circ g \circ f)(x) = g[g[f(x)]] = g[g(\frac{x^2}{3})] = g(\frac{x^2}{3} + 1) = \frac{x^2}{3} + 1 + 1 = \frac{x^2}{3} + 2$$

EJERCICIO 3: Sabiendo que: $f(x)=3x^2$ y $g(x)=\frac{1}{x+2}$ Explica cómo se pueden obtener por composición, a partir de ellas, las siguientes funciones: $p(x)=\frac{3}{(x+2)^2}$ $q(x)=\frac{1}{3x^2+2}$

$$p(x) = (f \circ q)(x)$$

$$a(x) = (a \circ f)(x)$$

<u>EJERCICIO 4</u>: Explica cómo se pueden obtener por composición las funciones p(x) y q(x) a partir de f(x) y g(x), siendo: f(x) = 2x - 3, $g(x) = \sqrt{x - 2}$, $p(x) = 2\sqrt{x - 2} - 3$ y $q(x) = \sqrt{2x - 5}$

$$p(x) = (f \circ g)(x)$$

$$q(x) = (q \circ f)(x)$$

EJERCICIO 5: Las funciones f y g están definidas por: $f(x) = \frac{x-1}{3}$ y $g(x) = \sqrt{x}$. Explica cómo, a partir de ellas, por composición, podemos obtener: $p(x) = \sqrt{\frac{x-1}{3}}$ y $q(x) = \frac{\sqrt{x}-1}{3}$

$$p(x) = (g \circ f)(x)$$

$$q(x) = (f \circ g)(x)$$

INVERSA DE UNA FUNCIÓN

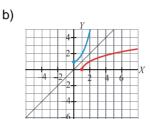
EJERCICIO 6 : Esta es la gráfica de la función y = f(x):



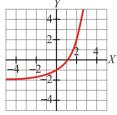
- a) Calcula $f^{-1}(0)y f^{-1}(2)$
- b) Representa en los mismos ejes $f^{-1}(x)$ a partir de la gráfica de f(x)

Solución:

a)
$$f^{-1}(0) = 1$$
 porque $f(1) = 0$
 $f^{-1}(2) = 5$ porque $f(5) = 2$



EJERCICIO 7: Dada la gráfica de la función y = f(x):

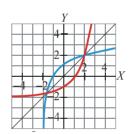


- a) Calcula $f^{-1}(-1)$ y $f^{-1}(0)$
- b) Representa gráficamente en los mismos ejes $f^{-1}(x)$, a partir de la gráfica de f(x)

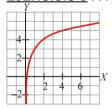
Solución:

a)
$$f^{-1}(-1) = 0$$
 porque $f(0) = -1$
 $f^{-1}(0) = 1$ porque $f(1) = 0$

b)



EJERCICIO 8: A partir de la gráfica de y = f(x):

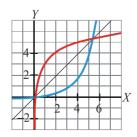


- a) Calcula $f^{-1}(3) y f^{-1}(5)$
- b) Representa, en los mismos ejes, $f^{-1}(x)$.

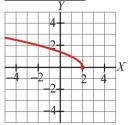
Solución:

a)
$$f^{-1}(3) = 1$$
 porque $f(1) = 3$
 $f^{-1}(5) = 4$ porque $f(4) = 5$

b)



EJERCICIO 9 : Esta gráfica corresponde a la función y = f(x):

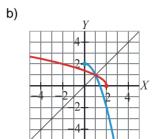


A partir de ella:

- a) Calcula $f^{-1}(2) y f^{-1}(0)$
- b) Representa, en los mismos ejes, la función $f^{-1}(x)$.

Solución:

a)
$$f^{-1}(2) = -2$$
 porque $f(-2) = 2$
 $f^{-1}(0) = 2$ porque $f(2) = 0$



EJERCICIO 10 : Halla la función inversa de

a)
$$f(x) = \frac{2x-1}{3}$$

b)
$$f(x) = \frac{2-3x}{4}$$

c)
$$f(x) = \frac{-x+3}{2}$$

a)
$$f(x) = \frac{2x-1}{3}$$
 b) $f(x) = \frac{2-3x}{4}$ c) $f(x) = \frac{-x+3}{2}$ d) $f(x) = \frac{-2x-1}{5}$ e) $f(x) = \frac{-2+7x}{3}$

e)
$$f(x) = \frac{-2 + 7x}{3}$$

a) Cambiamos x por y, y despejamos la y:

$$x = \frac{2y-1}{3}$$
 \Rightarrow $3x = 2y-1$ \Rightarrow $3x+1=2y$ \Rightarrow $\frac{3x+1}{2}=y$ \Rightarrow Por tanto: $f^{-1}(x)=\frac{3x+1}{2}$

b) Cambiamos x por y y despejamos la y:

$$x = \frac{2-3y}{4}$$
 \Rightarrow $4x = 2-3y$ \Rightarrow $3y = 2-4x$ \Rightarrow $y = \frac{2-4x}{3}$ \Rightarrow Por tanto: $f^{-1}(x) = \frac{2-4x}{3}$

c) Cambiamos x por y, y despejamos la y:

$$x = \frac{-y+3}{2}$$
 \Rightarrow $2x = -y+3$ \Rightarrow $y = 3-2x$ \Rightarrow Por tanto: $f^{-1}(x) = 3-2x$

d) Cambiamos x por y, y despejamos la y:

$$x = \frac{-2y-1}{5}$$
 \Rightarrow $5x = -2y-1$ \Rightarrow $2y = -5x-1$ \Rightarrow $y = \frac{-5x-1}{2}$ \Rightarrow Por tanto: $f^{-1}(x) = \frac{-5x-1}{2}$

e) Cambiamos x por y y despejamos la y:

$$x = \frac{-2+7y}{3}$$
 \Rightarrow $3x = -2+7y$ \Rightarrow $3x+2=7y$ \Rightarrow $\frac{3x+2}{7} = y \Rightarrow \text{Por tanto}$: $f^{-1}(x) = \frac{3x+2}{7}$

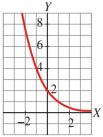
FUNCIÓN EXPONENCIAL Y LOGARÍTMICAS

EJERCICIO 11 : Dibuja la gráfica de las siguientes funciones:

a)
$$y = 2^{1-x}$$
 b) $y = log_{\frac{1}{4}}x$ c) $y = 1 - log_2 x$ d) $y = \left(\frac{1}{4}\right)^{x+2}$ e) $y = 3^{x+1}$

- La función está definida y es continua en R.
- La gráfica es:
- Hacemos una tabla de valores:

ſ	Χ	-∞	-2	-1	0	1	2	+∞
ſ	Υ	+∞	8	4	2	1	1/2	0



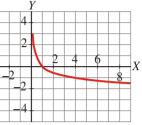
b)

• Dominio = $(0, +\infty)$

• Hacemos una tabla de valores:

Χ	$\left(\frac{1}{4}\right)^{-\infty}$	$\left(\frac{1}{4}\right)^{-2}$	$\left(\frac{1}{4}\right)^{-1}$	$\left(\frac{1}{4}\right)^0$	$\left(\frac{1}{4}\right)^1$	$\left(\frac{1}{4}\right)^2$	$\left(\frac{1}{4}\right)^{+\infty}$
Χ	0	16	4	1	1/4	1/16	+∞
Υ	-∞	-2	-1	0	1	2	+∞

• La gráfica es:



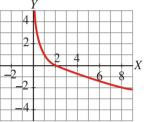
c)

• Dominio = $(0, +\infty)$

• Hacemos una tabla de valores.

Х	$2^{-\infty}$	2^{-2}	2^{-1}	2^{0}	21	2 ²	2+∞
Χ	0	1/4	1/2	1	2	4	+∞
Υ	+∞	3	2	1	0	-1	

• La gráfica será:



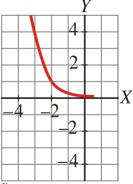
d)

• La función está definida y es continua en R.

• Hacemos una tabla de valores:

Х	-∞	-2	-1	0	1	2	+∞
Υ	+∞	1	1/4	1/64	1/256	1/1024	0

• La gráfica será:



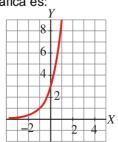
e)

• La función está definida y es continua en R.

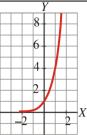
• Hacemos una tabla de valores:

Ī	Χ	-∞	-2	-1	0	1	2	+∞
	Υ	0	1/3	1	3	9	27	+∞

La gráfica es:



EJERCICIO 12: Consideramos la gráfica:

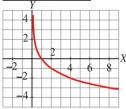


- a) Halla la expresión analítica de la función correspondiente.
- b) ¿Cuál es el dominio de dicha función?
- c) Estudia la continuidad y el crecimiento.

Solución:

- a) Es una función exponencial de base mayor que 1, que pasa por los puntos (0, 1), (1, 4)... Su expresión analítica es $y = 4^x$.
- b) $Dominio = \mathbf{R}$
- c) Es una función continua y creciente.

EJERCICIO 13: Considera la siguiente gráfica:



- a) Escribe la expresión analítica de la función correspondiente.
- b) Estudia la continuidad y el crecimiento de la función e indica cuál es su dominio de definición.

Solución:

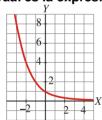
a) Es una función logarítmica con base menor que 1, que pasa por los puntos (1, 0), (2, -1),

$$(4, -2)(\frac{1}{2}, 1)$$
... Su expresión analítica es: $y = log_{\frac{1}{2}}x$

- b) Es una función continua.
 - Es decreciente.
 - Dominio = $(0, +\infty)$

EJERCICIO 14:

a) ¿Cuál es la expresión analítica de la función correspondiente a esta gráfica?



b) Indica cuál es el dominio de definición y estudia la continuidad y el crecimiento de la función.

Solución:

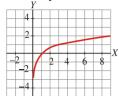
a) Es una función exponencial con base menor que 1, que pasa por los puntos (-2, 4), (-1, 2), $\left(1, \frac{1}{2}\right)$...

Su expresión analítica será: $y = \left(\frac{1}{2}\right)^x$

- b) Dominio = R
 - Es continua.
 - Es decreciente.

EJERCICIO 15:

a) Halla la expresión analítica de la función cuya gráfica es:



b) Estudia los siguientes aspectos de la función: dominio, continuidad y crecimiento.

Solución:

a) Es una función logarítmica que pasa por los puntos (1,0), (3,1), (9,2)... Su expresión analítica será: $y = log_3 x$

b) • Dominio = $(0, +\infty)$

• Es continua.

• Es creciente.

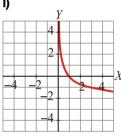
EJERCICIO 16: Asocia cada una de las siguientes gráficas con su expresión analítica:

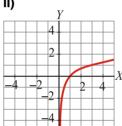
a)
$$y = 3^x$$

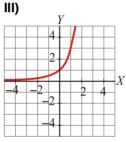
c)
$$y = \log_3 x$$

d)
$$y = \log_{1/3} x$$

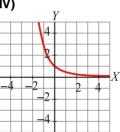
I)







IV)



Solución: a) III

b) IV

c) II

d) I

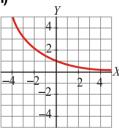
EJERCICIO 17: Asocia a cada gráfica su ecuación:

$$b) y = \left(\frac{3}{2}\right)$$

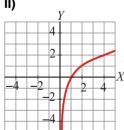
c)
$$y = log_2 x$$

d)
$$y = log_{1/2} x$$

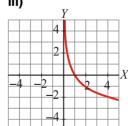
I)



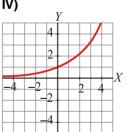
II)



III)



IV)



Solución: a) I

b) IV

c) II

d) III

PROBLEMAS FUNCIONES EXPONENCIALES

<u>EJERCICIO 18</u>: Un trabajador va a ganar, durante el primer año, un sueldo de 15 000 euros, y el aumento del sueldo va a ser de un 2% anual.

- a) ¿Cuál será su sueldo anual dentro de un año? ¿Y dentro de dos años?
- b) Halla la expresión analítica que nos da su sueldo anual en función del tiempo (en años)

Solución:

a) Dentro de un año ganará: $15\ 000 \cdot 1,02 = 15\ 300$ euros Dentro de dos años ganará: $15\ 000 \cdot 1,02^2 = 15\ 606$ euros.

b) Dentro de x años su sueldo será de y euros, siendo: $y = 15\,000 \cdot 1,02^x$

<u>EJERCICIO 19</u>: En un contrato de alquiler de una casa figura que el coste subirá un 2% cada año. Si el primer año se pagan 7 200 euros (en 12 recibos mensuales):

- a) ¿Cuánto se pagará dentro de 1 año? ¿Y dentro de 2 años?
- b) Obtén la función que nos dé el coste anual al cabo de x años.

Solución:

a) Dentro de un año se pagarán 7 200 · 1,02 = 7 344 euros. Dentro de un año se pagarán 7 200 · 1,02² = 7 490,88 euros. b) Dentro de x años se pagarán: $y = 7 200 \cdot 1,12^x$ euros

EJERCICIO 20 : Una población que tenía inicialmente 300 individuos va creciendo a un ritmo del 12% cada año.

- a) ¿Cuántos individuos habrá dentro de un año? ¿Y dentro de 3 años?
- b) Halla la función que nos da el número de individuos según los años transcurridos.

Solución:

a) Dentro de un año habrá: $300 \cdot 1,12 = 336$ individuos Dentro de tres años habrá: $300 \cdot 1,12^3 \approx 421$ individuos

b) Dentro de x años habrá y individuos, siendo: $y = 300 \cdot 1,12^x$ (tomando y entero)

EJERCICIO 21: Un coche que nos costó 12 000 euros pierde un 12% de su valor cada año.

- a) ¿Cuánto valdrá dentro de un año? ¿Y dentro de 3 años?
- b) Obtén la función que nos da el precio del coche según los años transcurridos.

Solución:

a) Dentro de un año valdrá: $12\ 000 \cdot 0.88 = 10\ 560$ euros Dentro de tres años valdrá: $12\ 000 \cdot 0.88^3 = 8\ 177,66$ euros b) Dentro de x años valdrá y euros, siendo: $y = 12\ 000 \cdot 0.88^x$

EJERCICIO 22: Colocamos en una cuenta 2 000 euros al 3% anual.

- a) ¿Cuánto dinero tendremos en la cuenta al cabo de un año? ¿Y dentro de 4 años?
- b) Halla la expresión analítica que nos da la cantidad de dinero que tendremos en la cuenta en función del tiempo transcurrido (en años).

Solución:

a) Dentro de un año tendremos: $2\ 000 \cdot 1,03 = 2\ 060\ \text{euros}$ Dentro de cuatro años tendremos: $2\ 000 \cdot 1,03^4 = 2\ 251,02\ \text{euros}$ b) Dentro de x años tendremos y euros, siendo: $y = 2\ 000 \cdot 1,03^x$

FUNCIONES TRIGONOMÉTRICAS

EJERCICIO 23: Representa la siguiente función:

a)
$$y = 2 tg x$$

b)
$$y = 1 - \sec x$$

c)
$$y = |\cos x|$$

c)
$$y = |\cos x|$$
 d) $y = 3 \cos x$ e) $y = 2 \sin x$

Solución:

a) Al igual que y = tg x, esta función no está definida en $x = \frac{\pi}{2} + k\pi$, donde k es un número entero.

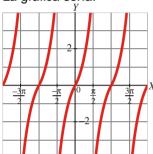
En estos valores hay asíntotas verticales.

Además, es una función periódica de período π .

Hagamos una tabla con algunos valores:

X	$\frac{-\pi}{3}$	$\frac{-\pi}{4}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
y = 2tgx	-3,46	-2	-1,15	0	1,15	2	3,46

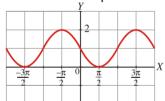
La gráfica sería:



b) Hacemos una tabla de valores:

Х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$y = 1 - \operatorname{sen} x$	1	0	1	2	1

y, teniendo en cuenta que es una función periódica, la representamos:

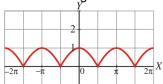


c) La gráfica es como la de $y = \cos x$; pero la parte que estaba por debajo del eje X, ahora está por encima.

Hagamos una tabla de valores:

X	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$y = \cos x $	1	0	1	0	1

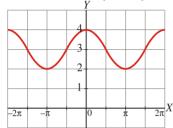
La gráfica será la siguiente:



d) Hacemos una tabla de valores:

Ē						
	×	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
	$y = 3 + \cos x$	4	3	2	3	4

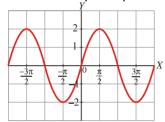
y, teniendo en cuenta que es periódica, la representamos:



e) Hacemos una tabla de valores:

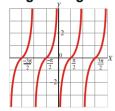
Х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
y = 2 sen x	0	2	0	-2	0

Teniendo en cuenta que es periódica, la representamos:



EJERCICIO 24

a) A la siguiente gráfica le corresponde una de estas expresiones analíticas. ¿Cuál?



$$y = tg x$$

$$y = tg 2x$$

$$y = tg\left(x + \frac{\pi}{2}\right)$$

$$y = tg\left(x + \frac{\pi}{2}\right)$$
 $y = tg\left(x + \pi\right)$ $y = \cos x$

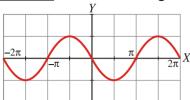
b) Di para qué valores está definida la función anterior, cuál es su periodo y estudia su continuidad.

a)
$$y = tg\left(x + \frac{\pi}{2}\right)$$

- b) Está definida en todo \mathbf{R} , salvo en los múltiplos de π .

 - Es periódica de periodo π . Es continua en los valores en que está definida.

EJERCICIO 25 : Considera la siguiente gráfica:



a) Di cuál de estas expresiones analíticas le corresponde:

$$y = cos(x + \pi)$$

$$y = sen(x + \pi)$$

$$y = \cos 2x$$

$$y = sen 2x$$

b) Di cuál es su dominio de definición, cuál es su periodo y qué valores mínimo y máximo alcanza.

Solución:

a)
$$y = sen(x + \pi)$$

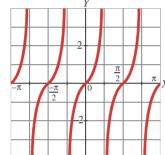
b) • Dominio =
$$\mathbf{R}$$

• Periodo =
$$2\pi$$

• Periodo =
$$2\pi$$
 • La función toma valores entre -1 y 1.

EJERCICIO 26

a) Di cuál de las siguientes expresiones se corresponde con la gráfica:



$$y = 2 \cos x$$

$$y = 2 tg x$$

$$y = tg 2x$$

$$y = ig Zx$$

 $y = 2 + cos x$

$$y = \cos 2x$$

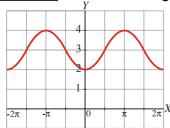
b) Para la función anterior, di cuál es su dominio, estudia su continuidad e indica cuál es su periodo.

Solución:

a)
$$y = tg 2x$$

- b) Dominio = $\mathbf{R} \left\{ \frac{\pi}{4} + k \frac{\pi}{2} \right\}$, es decir, está definida en \mathbf{R} , salvo en las abscisas $\frac{\pi}{4} + k \frac{\pi}{2}$, siendo k números enteros.
 - Es continua en los puntos en los que está definida. • Es periódica de periodo $\frac{\pi}{2}$.

EJERCICIO 27: Considera la siguiente gráfica y responde:



a) ¿Cuál de estas es su expresión analítica?

$$y = 3 - sen x$$

$$y = 3 - \cos x$$

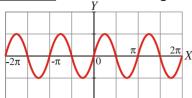
$$y = 3 + \cos x$$

$$y = 3 + sen x$$

- b) ¿Cuál es su dominio de definición?
- d) ¿Es periódica? ¿Cuál es su periodo?
- c) ¿Es una función continua?
- e) ¿Qué valores mínimo y máximo alcanza?

- a) $v = 3 \cos x$
- b) Dominio = \mathbf{R}
- c) Sí, es continua.
- d) Es periódica de período 2π , pues la gráfica se repite cada 2π unidad.
- e) Los valores de la función están entre 2 y 4.

EJERCICIO 28 : Considera la siguiente gráfica:



a) ¿Cuál de estas expresiones analíticas le corresponde?

$$y = sen2x$$

$$y = \cos 2x$$

$$y = tg 2x$$

b) ¿Cuál es su dominio de definición?

d) ¿Cuál es su periodo?

c) ¿Es una función continua?

e) ¿Qué valores mínimo y máximo alcanza?

Solución:

a) y = sen 2x

b) Dominio = \mathbf{R}

c) Sí, es continua.

d) Su periodo es π , pues la gráfica se repite cada π unidades.

e) Los valores están entre -1 y 1.

EJERCICIO 29 : Obtén el valor de estas expresiones en grados:

a)
$$y = arcsen \frac{1}{2}$$

b)
$$y = \arccos \frac{\sqrt{2}}{2}$$

a)
$$y = \arccos \frac{\sqrt{3}}{2}$$

b)
$$y = arctg1$$

a)
$$y = arcsen\left(-\frac{1}{2}\right)$$

b)
$$y = arccos1$$

a)
$$y = arccos(-1)$$

b)
$$y = arctg(\sqrt{3})$$

a)
$$y = arcsen\left(-\frac{\sqrt{3}}{2}\right)$$
 b) $y = arccos\left(-\frac{\sqrt{2}}{2}\right)$

b)
$$y = arccos\left(-\frac{\sqrt{2}}{2}\right)$$

a)
$$y = 30^{\circ}$$

b)
$$y = 45^{\circ}$$

b)
$$y = 45^{\circ}$$
 a) $y = 30^{\circ}$ b) $y = 45^{\circ}$

b)
$$v = 45^{\circ}$$

a)
$$y = -30^{\circ}$$

b)
$$v = 0^{\circ}$$

a)
$$v = 180^{\circ}$$

b)
$$v = 60^{\circ}$$

a)
$$v = -60^{\circ}$$

b)
$$y = 0^{\circ}$$
 a) $y = 180^{\circ}$ b) $y = 60^{\circ}$ a) $y = -60^{\circ}$ b) $y = 180^{\circ} - 45^{\circ} = 135^{\circ}$